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» In practice, data change over time.

» Reasoning problem on Temporal
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Static & Temporal Knowledge Graph Reasoning

Table: Path-based Reasoning models for Static & Temporal Knowledge Graph

Method Future timestamps  Unseen entities  Efficient Explanatory Reward Flexible Action Selection Open Source

MINERVA [20]
Multi-hop KG [19]
RE-NET [16]
CyGNett [9]
TANGO [6]
TAgent [8]

TITer [7]

TPath [3]
DREAM [2]
RLAT [1]
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Challenges in RL for TKG Reasoning

General, when compared to interpolation, extrapolation setting is more difficult and
challenging. Recently, path-based reasoning methods are potential solutions for this setting and
face two challenges:

» The reward function is a critical component for the agent. Most current works focus on
constructing a binary global reward function, which makes the agent’s learning process
inflexible.

» The action space for the agent is too large, and there is limited research on how to select
appropriate actions for the agent.
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Our contributions

» Proposing a new multi-reward function, incorporating various reward criteria for the agent.

» Incorporating Tensor decomposition architectures such as TuckER, ComplEx, and LowFER
with MLP and KAN-Policy Network to generate reliability scores for actions.

» Performing experiments and ablation study on standard datasets for the future link
prediction task with improvements on metrics.
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Basic Notations

> Let £, R, T, and Q denote the sets of entities, relations, timestamps and quadruples.
» Each quadruplet in TKG can be defined as a tuple (e, 7, €, ).
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Problem Statement

Considering TKG as G(1.1) = {G1,G2,...,Gr}, where G, = {&, R, Q;} is a static
multi-relational graph, and & and Q; denote entities and facts that exist at time ¢.

e Input: with given a query (eq, 74,7, ) or (7,74,€q,%t,), and a set of known facts
{(631‘ yT'iy €0y s ti)|ti < tq}

e Output: potential candidates which can replace the missing object or subject entity in the
Input query.
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RL Framework for TKG reasoning

Mains components in framework are:

States: Let S as state space, each state can represent as s; = (e(y), t(¢), €¢,tq;7q) € S.

Actions: Let A be the action space. Set of actions for step £ is
A ={(r", ¢, )|(er,r', €, t') € Q,t" <t;,t' <t,} which implies outgoing edges of the
current node of agent.

Transition function £ : § x A — S defined by:
(se; Ag) = (o1, ter1, €q,tg,Tq) = St (1)

which transfer the environment state to a new node through edge selected by agent.

Reward function: Commonly, binary global reward function is defined by:
Ryin(sp) =1I(e; == ege), (2)

where I(.) is a function that return 1 or 0.
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Proposed Model

Proposed Model

Outline

11



Overview of our proposed model CAT Ter

Inspired by path-based methods for static & temporal KGs, we propose new temporal
path-based reinforcement learning for extrapolated TKG reasoning with two advances: 1)
multi-reward function and 2) confidence-guided policy network.

A 3-length trajectory Policy Network
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Tensor Decomposition : : Path reward
(ComplEX, TuckER, and : :
LOWFER) : oLl Rule reward
Accurate reward
Extrapolation results Confidence Module Time-shaped rewards
[Example: Base on reasoning path (Nigeria, Make

an appeal or request, 2
2018/10/01) => (Nigeria, Consult, Muhammadu
Buhari, 2018/10/04)
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Overview of our proposed model CAT Ter

Following TITer, there is no edge between snapshots, so we add three types of edges:
1. Reversed edges
2. Self-loop edges
3. Temporal Edges

Proposed Model
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Multi-reward Mechanism with Rule Enhancing

We proposed new multi-reward function:
R= (]- + alet)(l + OQRruIe)(Rbin + a3Rpath)7 (3)
where Ryin is binary reward, Ry is (adjusted) ground truth frequency reward, Ry is

high-frequency rule reward, Rpath is (adjusted) path length reward, and a; € (0,1), a2 € (0,1),
and ag € (0,1) are weights.
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Binary global reward

The binary global reward that is defined by:

Rbin(SL) = H(Eg == egt).

Proposed Model
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Adjusted ground truth frequency reward

With given (eq,7q, €qt,tq), Ngt = {n1,n2,...,ny} denote the number of times that the ey
occur in m snapshot {G;,_1,Gy,—2,...,G¢,—m}, i.e., ng, (i = 1,...,m) is the number of
times that ey occurs in subgraph G, ;. We expect the e, should occur maximum as possible

We define the ground truth frequency reward as follows:

79 Iftfmgtzgtv
Rgt(SL) = {(J; ! ! (5)

where N
fi = — _z (Mg’ (normalized by max and min)
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Adjusted path length reward

We expect the path length to ey, should be minimum as possible. So, we proposed adjusted
path length reward which can be defined as:

Wpath

Rpath(sL) = P — 1

(6)

where py < pmax denotes the length of the path taken by the agent to capture the target entity
from the source node at step ¢, ppax is the maximum path length which agent can reach a
node, and wpath € (0, 1) is the weight for current path length which is taken.

Note that: minus one in denominator means to accelerate our expectations.
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High-frequency rule reward

In our observations, knowledge graphs usually contain a pair entity relation, frequently
appearing in the timelines.

Formally, given a common pair entity-relation set, which is denoted as ER = {(e;,7;)}¥_;.
Each pair in ER has a frequency of occurrence greater than or equal to a threshold ¢ depending
on the dataset. Then, we define a high-frequency rule reward for our agent as follows:

Weule, I (eg,7¢) € ER,
Rrule(SL) _ { rule ( 4 f) (7)

0, otherwise

where wyye is reward value for matching rule.
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Multi-reward reshaping

Based on the training set, we estime a Dirichlet Distribution for each relation. Then, we
reshape the original multi-reward with this distribution:

R(sy) = (14 pas, R(sp)
Aty =t, —tL (8)
(p1,...,pk) ~ Dirichlet(a,, ), € RE

Proposed Model 19



Policy Network

» Dynamic Embedding. Relative time encoding function to represent time information.
®(t, —t) =oc(WAt+b) = B(At); (9)
e; = [e; ®(A?)] (10)

» Historical Path Encoding. We use LSTM/ GRU to encode the search history which is the
sequence of actions taken.

h%ru = GRU([I'g_l; e?’:f]; hé—l)’

oru . (11)
hg™ = GRU([ro; e;7, 0]).

with r( is dummy relation for initialization. Similar if we use LSTM.

Proposed Model
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Policy Network

» Action scoring. We use a weighted action scoring to help agent pay more attention to
attributes of destination nodes.

¢(an7 SZ) = ﬂn <6, e,,t{l> + (1 - Bn) <F7 I'n> )
with
& = W ReLU(W [h)"™/&"; elo; 1)),

F = W,.ReLU(W, [h§"™&"; glo: 1)),

b q )
B, = sigmoid(W [hy™™/&"; ela;rys el r,)),

where W1, W,, W,. and W are trainable parameters for MLP or KAN.

Proposed Model

(12)
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Policy Network

» Confidence Rate Action Calculation. We calculate the confidence rate ¢, |, of each
a, € Ay via softmax function which receive the input vector from tensor decomposition
such as TuckER [15], ComplEx [22], and LowFER [11] as follow:

exp(¢an|q)
) 13
Canlq Za;eAz exp(Yay|q)’ (13)

where
Yanjq = W X1 €7 Xarg x3 el if use TuckER,
Ya,1q = Re <<eﬁ,‘1, rq7e7n">> if use ComplEx,
Y, | = (S*diag(U"elr)Vr,) elr, if use LowFER,

Proposed Model
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Policy Network

» The policy mg(as | s¢) at step £ is defined as:

exp((rb(afa SZ) * Caz|q)

mo(ae | s¢) = 5

a,€A; eXP((b(aé, Sg) * Cag\q)

Proposed Model
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Optimization

We apply REINFORCE algorithm [27] that will iterate through all quadruple in Q4 and
update 6 with the following stochastic gradient method such as SGD [21], Adam [21, 24] or
AdaGrad [26]:

VoJ(0) = Ve > R(sles,r,t)logms(arlse) (15)
me(l,L]

Proposed Model 24
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Datasets and Baselines

> Baselines.
1. Interpolation-based models: TTransE [18], TA-DistMult [17], DE-SimplE [12], and
TNTComplEx [14].
2. Extrapolation-based models: RE-NET [13], CyGNet [10], TANGO [4], xERTE [5], and
TITer [7].

> Datasets. ICEWS14 and ICEWS18 [23], WIKI [18] and YAGO [25].

Experiments
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Performance and efficiency comparison

Method ICEWS14 —_ICEWSI8 _
MRRT Hitdl T Hit@3 { Hitol0 MRR{ Ht@l{ Hit@3 f Hit@10 |
TTransE 1343 311 1732 3455 | 831 1.02 8.56 21.89
TA-DistMult 2647  17.09 3022 4541 | 1675 8.6l 1841  33.59
DE-SimplE 3267 2443 3569 4911 | 1930 1153  21.86  34.80
TNTComplEx 3212 2335 3603 4913 | 2754 1952 3080  42.86
CyGNet 3273 2369 3631  50.67 | 2493 1590 2828  42.61
RE-NET 3828  28.68 4134 5452 | 2881 1005 3244  47.51
xERTE 4079 3270 4567  57.30 | 2031  21.03 3351 4648
TANGO-Tucker - - - - 28.68 1935 3217  47.04
TANGO-DistMult - - - - 2675  17.92 3008  44.09
TiTer 41.73 3274  46.46 58.44 | 2098 22.05 3346 4483
TITer* 4033 31.00 4530 5771 | 2942 2163 3283  43.96
CATTer-MLP 4121 3247 4575 5737 | 2954  21.60 3299 4451
CATTer-KAN 4013 31.04 4480 5719 | 2011 2137 3246  43.60
APG (%) T (MLP) | 0.62  0.54 061 0.64 | -022 -0.30 -0.02 0.03
RPG (%) 1 (MLP) | 2.18  4.74 099 -059 | 041 -0.14  0.49 1.25
APG (%) 1 (KAN) | 0.65  0.48 077 092 | -061 -0.68 -054  -0.53
RPG (%) T (KAN) | -0.49  0.13  -1.10 -0.90 | -1.05 -1.20 -1.13  -0.82
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Performance and efficiency comparison

Method WIKI : ___YAGO :
MRRT Hit0l] Hitd3 ] Hitdl0 MRR] Hit@l ] Hit@3 1 Hit@10 |
TTransk 2027  21.67 3443 4239 | 31.10 1812 4091  51.21
TA-DistMult 4453 39.92 4873 5171 | 5492 4815 5061  66.71
DE-SimplE 4543 426 4771 4955 | 5491 5164 5730  60.17
TNTComplEx 4503 4004 4931 5203 | 57.98 5292 6133  66.69
CyGNet 3380 2906 3610  41.86 | 5207 4536 5612  63.77
RE-NET 4966  46.88 5119 5348 | 5802  53.06 6108  66.29
XERTE 7114 6805 7611  79.01 | 8419  80.09  88.02  89.78
TANGO-Tucker 5043 4852 5147 5358 | 57.83  53.05  60.78  65.85
TANGO-DistMult | 51.15  49.66 5216 5335 | 6270  59.18  60.31  67.90
TiTer 75.50 72.96 77.49 79.02 | 87.47 8489  89.96  90.27
TiTer® 7356 7148 7486 7640 | 87.80 8552  89.02  90.31
CATTer-MLP 7418 7202 7547 7704 | 87.58 85.13  89.90  90.34
CATTer-KAN 7421 7196 7563  77.32 | 87.19 8484 8938  89.78
APG (%) T (MLP) | 0.88  1.47 045 034 | 012 003 0.6 0.55
RPG (%) 1 (MLP) | 0.84 076  0.81  0.83 | -0.25 -0.46  -0.02 0.03
APG (%) 1 (KAN) | -0.2  0.04 05 -052 | -031 -026 -0.37  -0.36
RPG (%) + (KAN) | 0.88  0.67  1.03 120 | -0.60 -0.80 -0.60  -0.59
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Performance and efficiency comparison

Table: Number of trainable parameters and calculation of our proposed models and baselines. MACs
stand for Multi-Adds operations, and M stand for million.

Method # Params  # MACGs

RE-NET  5.459M 4.370M
CyGNet 8.568M 8.554M
xERTE 2.927M 225.895M
TlTer 1.455M 0.225M
CATTer 1.425M 0.220M

Experiments
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Figure: The change of the loss function over each epoch with MLP and KAN Policy Network.
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Convergence Study
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Figure: The change of the multi-reward function over each epoch with MLP and KAN Policy Network.
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The Effect of Tensor decomposition methods for action confidence
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Figure: The effect of multi-reward mechanism for agent learning on ICEWS14, ICEWS18, YAGO and

WIKI dataset.
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Conclusion and Future Directions
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Conclusion

Introduces CAT Ter, an improved temporal-path-based RL model based on TimeTraveler.
Integrates confidence probability into MLP and KAN layers.

Designs a flexible Policy Network for better action selection.

Employs a multi-reward function for improved adaptability in TKGs.

Experimental results show enhanced future link prediction.

vvyVvyVvyyy

Future work: Incorporating sub-graph patterns and temporal rules.

Conclusion and Future Directions

35



Thanks for your attention
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