ICAART 2025 17th International Conference on Agents and Artificial Intelligence Porto, Portugal, 23-25 Feb 2025

Improving Temporal Knowledge Graph Forecasting via Multi-Rewards Mechanism and Confidence-Guided Tensor Decomposition Reinforcement Learning

Nam $Le^{1,2,3}$, Thanh $Le^{1,2,3}$, and Bac $Le^{1,2,3}$

¹Department of Computer Science ²Faculty of Information Technology, University of Science, Ho Chi Minh City, Vietnam ³Vietnam National University, Ho Chi Minh City, Vietnam

February 24, 2025

Outline

Introduction

Backgrounds

Proposed Model Multi-reward Mechanism with Rule Enhancing Tensor Decomposition Confidence-Guided Policy Network Agent Parameter Learning

Experiments

Conclusion and Future Directions

Introduction

Introduction

Figure: Example of Part of Temporal Knowledge Graph.

- In practice, data change over time.
- Reasoning problem on Temporal Knowledge Graph (TKG) can viewed in two settings:
 - Interpolation which focusing on completing the missing links at past timestamps.
 - Extrapolation which focusing on forecasting future facts.
- \Rightarrow We mainly focus on extrapolation setting.

Introduction

Static & Temporal Knowledge Graph Reasoning

Method	Future timestamps	Unseen entities	Efficient	Explanatory	Reward Flexible	Action Selection	Open Source
MINERVA [20]	x	x	\checkmark	x	x	x	\checkmark
Multi-hop KG [19]	х	\checkmark	\checkmark	x	х	х	\checkmark
RE-NET [16]	\checkmark	х	x	x	х	х	\checkmark
CyGNett [9]	\checkmark	х	\checkmark	x	х	х	\checkmark
TANGO [6]	\checkmark	х	х	x	х	х	\checkmark
TAgent [8]	\checkmark	х	х	x	х	х	x
TITer [7]	\checkmark	\checkmark	\checkmark	\checkmark	х	х	\checkmark
TPath [3]	\checkmark	x	\checkmark	х	х	х	x
DREAM [2]	\checkmark	х	х	x	\checkmark	х	x
RLAT [1]	\checkmark	x	х	×	x	x	x

Table: Path-based Reasoning models for Static & Temporal Knowledge Graph

Challenges in RL for TKG Reasoning

General, when compared to interpolation, extrapolation setting is more difficult and challenging. Recently, path-based reasoning methods are potential solutions for this setting and face two challenges:

- The reward function is a critical component for the agent. Most current works focus on constructing a binary global reward function, which makes the agent's learning process inflexible.
- The action space for the agent is too large, and there is limited research on how to select appropriate actions for the agent.

Our contributions

- > Proposing a new multi-reward function, incorporating various reward criteria for the agent.
- Incorporating Tensor decomposition architectures such as TuckER, ComplEx, and LowFER with MLP and KAN-Policy Network to generate reliability scores for actions.
- Performing experiments and ablation study on standard datasets for the future link prediction task with improvements on metrics.

Outline

Introduction

Backgrounds

Proposed Model Multi-reward Mechanism with Rule Enhancing Tensor Decomposition Confidence-Guided Policy Network Agent Parameter Learning

Experiments

Conclusion and Future Directions

Backgrounds

Basic Notations

- ▶ Let \mathcal{E} , \mathcal{R} , \mathcal{T} , and \mathcal{Q} denote the sets of entities, relations, timestamps and quadruples.
- Each quadruplet in TKG can be defined as a tuple (e_s, r, e_o, t) .

Problem Statement

Considering TKG as $\mathcal{G}_{(1,T)} = \{\mathcal{G}_1, \mathcal{G}_2, ..., \mathcal{G}_T\}$, where $\mathcal{G}_t = \{\mathcal{E}_t, \mathcal{R}, \mathcal{Q}_t\}$ is a static multi-relational graph, and \mathcal{E}_t and \mathcal{Q}_t denote entities and facts that exist at time t.

- Input: with given a query $(e_q,r_q,?,t_q)$ or $(?,r_q,e_q,t_q)$, and a set of known facts $\{(e_{s_i},r_i,e_{o_i},t_i)|t_i< t_q\}$
- Output: potential candidates which can replace the missing object or subject entity in the input query.

RL Framework for TKG reasoning

Mains components in framework are:

- States: Let S as state space, each state can represent as $s_{\ell} = (e_{(\ell)}, t_{(\ell)}, e_q, t_q, r_q) \in S$.
- Actions: Let \mathcal{A} be the action space. Set of actions for step ℓ is $\mathcal{A}_{\ell} = \{(r', e', t') | (e_l, r', e', t') \in \mathcal{Q}, t' \leq t_l, t' < t_q\}$ which implies outgoing edges of the current node of agent.
- Transition function $\xi : S \times A \rightarrow S$ defined by:

$$(s_{\ell}, \mathcal{A}_{\ell}) \mapsto (e_{\ell+1}, t_{\ell+1}, e_q, t_q, r_q) = s_{\ell+1}$$
(1)

which transfer the environment state to a new node through edge selected by agent.

• Reward function: Commonly, binary global reward function is defined by:

$$R_{bin}(s_L) = \mathbb{I}(e_l == e_{gt}), \tag{2}$$

where $\mathbb{I}(.)$ is a function that return 1 or 0.

Backgrounds

Outline

Introduction

Backgrounds

Proposed Model

Multi-reward Mechanism with Rule Enhancing Tensor Decomposition Confidence-Guided Policy Network Agent Parameter Learning

Experiments

Conclusion and Future Directions

Overview of our proposed model CATTer

Inspired by path-based methods for static & temporal KGs, we propose new temporal path-based reinforcement learning for extrapolated TKG reasoning with two advances: 1) multi-reward function and 2) confidence-guided policy network.

Overview of our proposed model CATTer

Following TITer, there is no edge between snapshots, so we add three types of edges:

- 1. Reversed edges
- 2. Self-loop edges
- 3. Temporal Edges

Multi-reward Mechanism with Rule Enhancing

We proposed new multi-reward function:

$$\mathbf{R} = (1 + \alpha_1 \mathbf{R}_{gt})(1 + \alpha_2 \mathbf{R}_{rule})(\mathbf{R}_{bin} + \alpha_3 \mathbf{R}_{path}), \tag{3}$$

where R_{bin} is binary reward, R_{gt} is (adjusted) ground truth frequency reward, R_{rule} is high-frequency rule reward, R_{path} is (adjusted) path length reward, and $\alpha_1 \in (0,1)$, $\alpha_2 \in (0,1)$, and $\alpha_3 \in (0,1)$ are weights.

Binary global reward

The *binary global reward* that is defined by:

$$\mathsf{R}_{bin}(s_L) = \mathbb{I}(e_\ell == e_{gt}). \tag{4}$$

Adjusted ground truth frequency reward

With given (e_q, r_q, e_{gt}, t_q) , $N_{gt} = \{n_1, n_2, \ldots, n_m\}$ denote the number of times that the e_{gt} occur in m snapshot $\{G_{t_q-1}, G_{t_q-2}, \ldots, G_{t_q-m}\}$, i.e., $n_i, (i = 1, \ldots, m)$ is the number of times that e_{gt} occurs in subgraph G_{t_q-i} . We expect the e_{gt} should occur maximum as possible

We define the ground truth frequency reward as follows:

$$\mathsf{R}_{\mathsf{gt}}(s_L) = \begin{cases} f_i, & \text{if } t_{q-m} \le t_i \le t_q, \\ 0, \end{cases}$$
(5)

where

$$f_i = rac{n_i}{\max(N_{ extsf{gt}}) - \min(N_{ extsf{gt}})}.$$
 (normalized by max and min)

Adjusted path length reward

We expect the path length to e_{gt} should be minimum as possible. So, we proposed *adjusted* path length reward which can be defined as:

$$\mathsf{R}_{\mathsf{path}}(s_L) = \frac{w_{\mathsf{path}}}{p_\ell - 1} \tag{6}$$

where $p_\ell \leq p_{\max}$ denotes the length of the path taken by the agent to capture the target entity from the source node at step ℓ , p_{\max} is the maximum path length which agent can reach a node, and $w_{\text{path}} \in (0,1)$ is the weight for current path length which is taken.

Note that: minus one in denominator means to accelerate our expectations.

High-frequency rule reward

In our observations, knowledge graphs usually contain a pair entity relation, frequently appearing in the timelines.

Formally, given a common pair entity-relation set, which is denoted as $ER = \{(e_i, r_i)\}_{i=1}^k$. Each pair in ER has a frequency of occurrence greater than or equal to a threshold ϑ depending on the dataset. Then, we define a *high-frequency rule reward* for our agent as follows:

$$\mathsf{R}_{\mathsf{rule}}(s_L) = \begin{cases} w_{\mathsf{rule}}, & \text{if } (e_\ell, r_\ell) \in \mathsf{ER}, \\ 0, & \text{otherwise} \end{cases}$$
(7)

where w_{rule} is reward value for matching rule.

Multi-reward reshaping

Based on the training set, we estime a Dirichlet Distribution for each relation. Then, we reshape the original multi-reward with this distribution:

$$\widetilde{R}(s_L) = (1 + p_{\Delta t_L} R(s_L))$$

$$\Delta t_L = t_q - t_L$$

$$p_1, \dots, p_k) \sim \mathsf{Dirichlet}(\boldsymbol{\alpha}_{r_q}), \boldsymbol{\alpha}_{r_q} \in \mathbb{R}^K$$
(8)

Dynamic Embedding. Relative time encoding function to represent time information.

$$\mathbf{\Phi}(t_q - t) = \sigma(\mathbf{w}\Delta t + \mathbf{b}) = \mathbf{\Phi}(\Delta t); \tag{9}$$

$$\mathbf{e}_{i}^{t} = [\mathbf{e}_{i}; \mathbf{\Phi}(\Delta t)] \tag{10}$$

Historical Path Encoding. We use LSTM/ GRU to encode the search history which is the sequence of actions taken.

$$\begin{aligned} \mathbf{h}_{\ell}^{\text{gru}} &= \mathsf{GRU}([\mathbf{r}_{\ell-1};\mathbf{e}_{\ell-1}^{t_{\ell-1}}],\mathbf{h}_{\ell-1}), \\ \mathbf{h}_{0}^{\text{gru}} &= \mathsf{GRU}([\mathbf{r}_{0};\mathbf{e}_{q}^{t_{q}},\mathbf{0}]). \end{aligned}$$

with \mathbf{r}_0 is dummy relation for initialization. Similar if we use LSTM.

Action scoring. We use a weighted action scoring to help agent pay more attention to attributes of destination nodes.

$$\phi(a_n, s_\ell) = \beta_n \left\langle \widetilde{\mathbf{e}}, \mathbf{e}_n^{t_n} \right\rangle + (1 - \beta_n) \left\langle \widetilde{\mathbf{r}}, \mathbf{r}_n \right\rangle, \tag{12}$$

with

$$\begin{split} \widetilde{\mathbf{e}} &= \mathbf{W}_{e}\mathsf{ReLU}(\mathbf{W}_{1}[\mathbf{h}_{\ell}^{\mathsf{lstm/gru}};\mathbf{e}_{q}^{t_{q}};\mathbf{r}_{q}]), \\ \widetilde{\mathbf{r}} &= \mathbf{W}_{r}\mathsf{ReLU}(\mathbf{W}_{1}[\mathbf{h}_{\ell}^{\mathsf{lstm/gru}};\mathbf{e}_{q}^{t_{q}};\mathbf{r}_{q}]), \\ \beta_{n} &= \mathsf{sigmoid}(\mathbf{W}_{\beta}[\mathbf{h}_{\ell}^{\mathsf{lstm/gru}};\mathbf{e}_{q}^{t_{q}};\mathbf{r}_{q};\mathbf{e}_{n}^{t_{n}};\mathbf{r}_{n}]), \end{split}$$

where \mathbf{W}_1 , \mathbf{W}_e , \mathbf{W}_r and \mathbf{W}_β are trainable parameters for MLP or KAN.

▶ Confidence Rate Action Calculation. We calculate the confidence rate $c_{a_n|q}$ of each $a_n \in A_\ell$ via softmax function which receive the input vector from tensor decomposition such as TuckER [15], ComplEx [22], and LowFER [11] as follow:

$$c_{a_{n}|q} = \frac{\exp(\psi_{a_{n}|q})}{\sum_{a'_{\ell} \in A_{\ell}} \exp(\psi_{a'_{\ell}|q})},$$
(13)

where

$$\begin{split} \psi_{a_n|q} &= \mathcal{W} \times_1 \mathbf{e}_q^{t_q} \times_2 \mathbf{r}_q \times_3 \mathbf{e}_n^{t_n}, \text{ if use TuckER}, \\ \psi_{a_n|q} &= \mathsf{Re}\left(\left\langle \mathbf{e}_q^{t_q}, \mathbf{r}_q, \overline{\mathbf{e}_n^{t_n}} \right\rangle \right) \text{ if use ComplEx}, \\ \psi_{a_n|q} &= (\mathbf{S}^k \mathsf{diag}(\mathbf{U}^\top \mathbf{e}_q^{t_q}) \mathbf{V}^\top \mathbf{r}_q)^\top \mathbf{e}_n^{t_n}, \text{ if use LowFER}, \end{split}$$

▶ The policy $\pi_{\theta}(a_{\ell} \mid s_{\ell})$ at step ℓ is defined as:

$$\pi_{\theta}(a_{\ell} \mid s_{\ell}) = \frac{\exp(\phi(a_{\ell}, s_{\ell}) * c_{a_{\ell}|q})}{\sum_{a'_{\ell} \in \mathcal{A}_{\ell}} \exp(\phi(a'_{\ell}, s_{\ell}) * c_{a'_{\ell}|q})}$$
(14)

Optimization

We apply REINFORCE algorithm [27] that will iterate through all quadruple in Q_{train} and update θ with the following stochastic gradient method such as SGD [21], Adam [21, 24] or AdaGrad [26]:

$$\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \sum_{m \in [1,L]} \widetilde{R}(s_L | e_s, r, t) \log \pi_{\theta}(a_\ell | s_\ell)$$
(15)

Outline

Introduction

Backgrounds

Proposed Model Multi-reward Mechanism with Rule Enhancing Tensor Decomposition Confidence-Guided Policy Network Agent Parameter Learning

Experiments

Conclusion and Future Directions

Experiments

Datasets and Baselines

Baselines.

- Interpolation-based models: TTransE [18], TA-DistMult [17], DE-SimplE [12], and TNTComplEx [14].
- 2. Extrapolation-based models: RE-NET [13], CyGNet [10], TANGO [4], xERTE [5], and TITer [7].
- Datasets. ICEWS14 and ICEWS18 [23], WIKI [18] and YAGO [25].

Performance and efficiency comparison

Mathod	ICEWS14				ICEWS18			
Wiethou	MRR ↑	Hit@1 ↑	Hit@3 ↑	Hit@10	MRR ↑	Hit@1 ↑	Hit@3 ↑	Hit@10 ↑
TTransE	13.43	3.11	17.32	34.55	8.31	1.92	8.56	21.89
TA-DistMult	26.47	17.09	30.22	45.41	16.75	8.61	18.41	33.59
DE-SimplE	32.67	24.43	35.69	49.11	19.30	11.53	21.86	34.80
TNTComplEx	32.12	23.35	36.03	49.13	27.54	19.52	30.80	42.86
CyGNet	32.73	23.69	36.31	50.67	24.93	15.90	28.28	42.61
RE-NET	38.28	28.68	41.34	54.52	28.81	19.05	32.44	47.51
×ERTE	40.79	32.70	45.67	57.30	29.31	21.03	33.51	46.48
TANGO-Tucker	-	-	-	-	28.68	19.35	32.17	47.04
TANGO-DistMult	-	-	-	-	26.75	17.92	30.08	44.09
TITer	41.73	32.74	46.46	58.44	29.98	22.05	33.46	44.83
TITer*	40.33	31.00	45.30	57.71	29.42	21.63	32.83	43.96
CATTer-MLP	41.21	<u>32.47</u>	45.75	<u>57.37</u>	<u>29.54</u>	21.60	32.99	44.51
CATTer-KAN	40.13	31.04	44.80	57.19	29.11	21.37	32.46	43.60
APG (%) ↑ (MLP)	0.62	0.54	0.61	0.64	-0.22	-0.39	-0.02	0.03
RPG (%) ↑ (MLP)	2.18	4.74	0.99	-0.59	0.41	-0.14	0.49	1.25
APG (%) ↑ (KAN)	0.65	0.48	0.77	0.92	-0.61	-0.68	-0.54	-0.53
RPG (%) ↑ (KAN)	-0.49	0.13	-1.10	-0.90	-1.05	-1.20	-1.13	-0.82

Performance and efficiency comparison

Mathod	WIKI				YAGO			
wiethou	MRR ↑	Hit@1 ↑	Hit@3 ↑	Hit@10	MRR ↑	Hit@1 ↑	Hit@3 ↑	Hit@10 ↑
TTransE	29.27	21.67	34.43	42.39	31.19	18.12	40.91	51.21
TA-DistMult	44.53	39.92	48.73	51.71	54.92	48.15	59.61	66.71
DE-SimplE	45.43	42.6	47.71	49.55	54.91	51.64	57.30	60.17
TNTComplEx	45.03	40.04	49.31	52.03	57.98	52.92	61.33	66.69
CyGNet	33.89	29.06	36.10	41.86	52.07	45.36	56.12	63.77
RE-NET	49.66	46.88	51.19	53.48	58.02	53.06	61.08	66.29
×ERTE	71.14	68.05	76.11	79.01	84.19	80.09	88.02	89.78
TANGO-Tucker	50.43	48.52	51.47	53.58	57.83	53.05	60.78	65.85
TANGO-DistMult	51.15	49.66	52.16	53.35	62.70	59.18	60.31	67.90
TITer	75.50	72.96	77.49	79.02	87.47	<u>84.89</u>	89.96	90.27
TITer*	73.56	71.48	74.86	76.40	87.80	85.52	89.92	90.31
CATTer-MLP	74.18	72.02	75.47	77.04	87.58	85.13	89.90	90.34
CATTer-KAN	74.21	71.96	75.63	77.32	87.19	84.84	89.38	89.78
APG (%) ↑ (MLP)	0.88	1.47	0.45	-0.34	0.12	-0.03	0.16	0.55
RPG (%) ↑ (MLP)	0.84	0.76	0.81	0.83	-0.25	-0.46	-0.02	0.03
APG (%) ↑ (KAN)	-0.2	0.04	-0.5	-0.52	-0.31	-0.26	-0.37	-0.36
RPG (%) ↑ (KAN)	0.88	0.67	1.03	1.20	-0.69	-0.80	-0.60	-0.59

Performance and efficiency comparison

Table: Number of trainable parameters and calculation of our proposed models and baselines. MACs stand for Multi-Adds operations, and M stand for million.

Method	# Params	# MACs
RE-NET	5.459M	4.370M
CyGNet	8.568M	8.554M
×ERTE	2.927M	225.895M
TITer	1.455M	0.225M
CATTer	1.425M	0.220M

Convergence Study

Figure: The change of the loss function over each epoch with MLP and KAN Policy Network. Experiments

Convergence Study

Figure: The change of the multi-reward function over each epoch with MLP and KAN Policy Network. Experiments

The Effect of Tensor decomposition methods for action confidence

Experiments

32

The effect of multi-rewards

Figure: The effect of multi-reward mechanism for agent learning on ICEWS14, ICEWS18, YAGO and WIKI dataset.

Experiments

Outline

Introduction

Backgrounds

Proposed Model Multi-reward Mechanism with Rule Enhancing Tensor Decomposition Confidence-Guided Policy Network Agent Parameter Learning

Experiments

Conclusion and Future Directions

Conclusion

- ▶ Introduces CATTer, an improved temporal-path-based RL model based on TimeTraveler.
- Integrates confidence probability into MLP and KAN layers.
- Designs a flexible Policy Network for better action selection.
- Employs a multi-reward function for improved adaptability in TKGs.
- Experimental results show enhanced future link prediction.
- Future work: Incorporating sub-graph patterns and temporal rules.

Thanks for your attention

References I

- Luyi Bai, Die Chai, and Lin Zhu. "RLAT: Multi-hop temporal knowledge graph reasoning based on Reinforcement Learning and Attention Mechanism". In: *Knowledge-Based Systems* 269 (2023), p. 110514.
- [2] Shangfei Zheng et al. "DREAM: Adaptive Reinforcement Learning based on Attention Mechanism for Temporal Knowledge Graph Reasoning". In: arXiv preprint arXiv:2304.03984 (2023).
- [3] Luyi Bai et al. "Multi-hop reasoning over paths in temporal knowledge graphs using reinforcement learning". In: *Applied Soft Computing* 103 (2021), p. 107144.
- [4] Zifeng Ding et al. "Temporal Knowledge Graph Forecasting with Neural ODE". In: *arXiv* preprint arXiv:2101.05151 (2021).
- [5] Zhen Han et al. "Explainable Subgraph Reasoning for Forecasting on Temporal Knowledge Graphs". In: International Conference on Learning Representations. 2021.

References II

- [6] Zhen Han et al. "Temporal knowledge graph forecasting with neural ode". In: *arXiv* preprint arXiv:2101.05151 (2021).
- [7] Haohai Sun et al. "TimeTraveler: Reinforcement Learning for Temporal Knowledge Graph Forecasting". In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021, pp. 8306–8319.
- [8] Ye Tao, Ying Li, and Zhonghai Wu. "Temporal link prediction via reinforcement learning". In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2021, pp. 3470–3474.
- [9] Cunchao Zhu et al. "Learning from history: Modeling temporal knowledge graphs with sequential copy-generation networks". In: *Proceedings of the AAAI conference on artificial intelligence*. 2021, pp. 4732–4740.
- [10] Cunchao Zhu et al. "Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks". In: *Thirty-Fifth AAAI Conference on Artificial Intelligence*. 2021, pp. 4732–4740.

Conclusion and Future Directions

References III

- [11] Saadullah Amin et al. "LowFER: Low-rank bilinear pooling for link prediction". In: International Conference on Machine Learning. PMLR. 2020, pp. 257–268.
- [12] Rishab Goel et al. "Diachronic Embedding for Temporal Knowledge Graph Completion". In: Thirty-Fourth AAAI Conference on Artificial Intelligence. 2020, pp. 3988–3995.
- [13] Woojeong Jin et al. "Recurrent Event Network: Autoregressive Structure Inference over Temporal Knowledge Graphs". In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. 2020, pp. 6669–6683.
- [14] Timothée Lacroix, Guillaume Obozinski, and Nicolas Usunier. "Tensor Decompositions for Temporal Knowledge Base Completion". In: International Conference on Learning Representations. 2020.
- [15] Ivana Balažević, Carl Allen, and Timothy M Hospedales. "Tucker: Tensor factorization for knowledge graph completion". In: arXiv preprint arXiv:1901.09590 (2019).

References IV

- [16] Woojeong Jin et al. "Recurrent event network: Autoregressive structure inference over temporal knowledge graphs". In: arXiv preprint arXiv:1904.05530 (2019).
- [17] Alberto García-Durán, Sebastijan Dumancic, and Mathias Niepert. "Learning Sequence Encoders for Temporal Knowledge Graph Completion". In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018, pp. 4816–4821.
- [18] Julien Leblay and Melisachew Wudage Chekol. "Deriving validity time in knowledge graph". In: Companion Proceedings of the The Web Conference 2018. 2018, pp. 1771–1776.
- [19] Xi Victoria Lin, Richard Socher, and Caiming Xiong. "Multi-hop knowledge graph reasoning with reward shaping". In: *arXiv preprint arXiv:1808.10568* (2018).
- [20] Rajarshi Das et al. "Go for a walk and arrive at the answer: Reasoning over paths in knowledge bases using reinforcement learning". In: arXiv preprint arXiv:1711.05851 (2017).

References V

- [21] Sebastian Ruder. "An overview of gradient descent optimization algorithms". In: arXiv preprint arXiv:1609.04747 (2016).
- [22] Théo Trouillon et al. "Complex embeddings for simple link prediction". In: International conference on machine learning. PMLR. 2016, pp. 2071–2080.
- [23] Elizabeth Boschee et al. ICEWS Coded Event Data. 2015.
- [24] Diederik P Kingma. "Adam: A method for stochastic optimization". In: arXiv preprint arXiv:1412.6980 (2014).
- [25] Farzaneh Mahdisoltani, Joanna Biega, and Fabian M Suchanek. "Yago3: A knowledge base from multilingual wikipedias". In: *CIDR*. 2013.
- [26] John Duchi, Elad Hazan, and Yoram Singer. "Adaptive subgradient methods for online learning and stochastic optimization.". In: *Journal of machine learning research* 12.7 (2011).
- [27] Ronald J Williams. "Simple statistical gradient-following algorithms for connectionist reinforcement learning". In: *Machine Learning* 8 (1992), pp. 229–256.

Conclusion and Future Directions