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Introduction

Figure: Example of Part of Temporal Knowledge
Graph.

▶ In practice, data change over time.

▶ Reasoning problem on Temporal
Knowledge Graph (TKG) can viewed in
two settings:

– Interpolation which focusing on
completing the missing links at past
timestamps.

– Extrapolation which focusing on
forecasting future facts.

⇒ We mainly focus on extrapolation setting.
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Static & Temporal Knowledge Graph Reasoning

Table: Path-based Reasoning models for Static & Temporal Knowledge Graph

Method Future timestamps Unseen entities Efficient Explanatory Reward Flexible Action Selection Open Source

MINERVA [20] x x x x x
Multi-hop KG [19] x x x x
RE-NET [16] x x x x x
CyGNett [9] x x x x
TANGO [6] x x x x x
TAgent [8] x x x x x x
TITer [7] x x
TPath [3] x x x x x
DREAM [2] x x x x x
RLAT [1] x x x x x x
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Challenges in RL for TKG Reasoning

General, when compared to interpolation, extrapolation setting is more difficult and
challenging. Recently, path-based reasoning methods are potential solutions for this setting and
face two challenges:

▶ The reward function is a critical component for the agent. Most current works focus on
constructing a binary global reward function, which makes the agent’s learning process
inflexible.

▶ The action space for the agent is too large, and there is limited research on how to select
appropriate actions for the agent.
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Our contributions

▶ Proposing a new multi-reward function, incorporating various reward criteria for the agent.

▶ Incorporating Tensor decomposition architectures such as TuckER, ComplEx, and LowFER
with MLP and KAN-Policy Network to generate reliability scores for actions.

▶ Performing experiments and ablation study on standard datasets for the future link
prediction task with improvements on metrics.
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Basic Notations

▶ Let E , R, T , and Q denote the sets of entities, relations, timestamps and quadruples.

▶ Each quadruplet in TKG can be defined as a tuple (es, r, eo, t).
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Problem Statement

Considering TKG as G(1,T ) = {G1,G2, ...,GT }, where Gt = {Et,R,Qt} is a static
multi-relational graph, and Et and Qt denote entities and facts that exist at time t.

• Input: with given a query (eq, rq, ?, tq) or (?, rq, eq, tq), and a set of known facts
{(esi , ri, eoi , ti)|ti < tq}

• Output: potential candidates which can replace the missing object or subject entity in the
input query.
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RL Framework for TKG reasoning

Mains components in framework are:

• States: Let S as state space, each state can represent as sℓ = (e(ℓ), t(ℓ), eq, tq, rq) ∈ S.
• Actions: Let A be the action space. Set of actions for step ℓ is

Aℓ = {(r′, e′, t′)|(el, r′, e′, t′) ∈ Q, t′ ≤ tl, t
′ < tq} which implies outgoing edges of the

current node of agent.

• Transition function ξ : S ×A → S defined by:

(sℓ,Aℓ) 7→ (eℓ+1, tℓ+1, eq, tq, rq) = sℓ+1 (1)

which transfer the environment state to a new node through edge selected by agent.

• Reward function: Commonly, binary global reward function is defined by:

Rbin(sL) = I(el == egt), (2)

where I(.) is a function that return 1 or 0.
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Overview of our proposed model CATTer

Inspired by path-based methods for static & temporal KGs, we propose new temporal
path-based reinforcement learning for extrapolated TKG reasoning with two advances: 1)
multi-reward function and 2) confidence-guided policy network.
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Overview of our proposed model CATTer

Following TITer, there is no edge between snapshots, so we add three types of edges:

1. Reversed edges

2. Self-loop edges

3. Temporal Edges
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Multi-reward Mechanism with Rule Enhancing

We proposed new multi-reward function:

R = (1 + α1Rgt)(1 + α2Rrule)(Rbin + α3Rpath), (3)

where Rbin is binary reward, Rgt is (adjusted) ground truth frequency reward, Rrule is
high-frequency rule reward, Rpath is (adjusted) path length reward, and α1 ∈ (0, 1), α2 ∈ (0, 1),
and α3 ∈ (0, 1) are weights.
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Binary global reward

The binary global reward that is defined by:

Rbin(sL) = I(eℓ == egt). (4)
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Adjusted ground truth frequency reward

With given (eq, rq, egt, tq), Ngt = {n1, n2, . . . , nm} denote the number of times that the egt
occur in m snapshot {Gtq−1, Gtq−2, . . . , Gtq−m}, i.e., ni, (i = 1, . . . ,m) is the number of
times that egt occurs in subgraph Gtq−i. We expect the egt should occur maximum as possible

We define the ground truth frequency reward as follows:

Rgt(sL) =

{
fi, if tq−m ≤ ti ≤ tq,

0,
(5)

where
fi =

ni
max(Ngt)−min(Ngt)

. (normalized by max and min)
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Adjusted path length reward

We expect the path length to egt should be minimum as possible. So, we proposed adjusted
path length reward which can be defined as:

Rpath(sL) =
wpath

pℓ − 1
(6)

where pℓ ≤ pmax denotes the length of the path taken by the agent to capture the target entity
from the source node at step ℓ, pmax is the maximum path length which agent can reach a
node, and wpath ∈ (0, 1) is the weight for current path length which is taken.

Note that: minus one in denominator means to accelerate our expectations.
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High-frequency rule reward

In our observations, knowledge graphs usually contain a pair entity relation, frequently
appearing in the timelines.

Formally, given a common pair entity-relation set, which is denoted as ER = {(ei, ri)}ki=1.
Each pair in ER has a frequency of occurrence greater than or equal to a threshold ϑ depending
on the dataset. Then, we define a high-frequency rule reward for our agent as follows:

Rrule(sL) =

{
wrule, if (eℓ, rℓ) ∈ ER,

0, otherwise
(7)

where wrule is reward value for matching rule.
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Multi-reward reshaping

Based on the training set, we estime a Dirichlet Distribution for each relation. Then, we
reshape the original multi-reward with this distribution:

R̃(sL) = (1 + p∆tLR(sL)

∆tL = tq − tL

(p1, . . . , pk) ∼ Dirichlet(αrq ),αrq ∈ RK

(8)
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Policy Network

▶ Dynamic Embedding. Relative time encoding function to represent time information.

Φ(tq − t) = σ(w∆t+ b) = Φ(∆t); (9)

eti = [ei;Φ(∆t)] (10)

▶ Historical Path Encoding. We use LSTM/ GRU to encode the search history which is the
sequence of actions taken.

hgru
ℓ = GRU([rℓ−1; e

tℓ−1

ℓ−1 ],hℓ−1),

hgru
0 = GRU([r0; e

tq
q ,0]).

(11)

with r0 is dummy relation for initialization. Similar if we use LSTM.

Proposed Model 20



Policy Network

▶ Action scoring. We use a weighted action scoring to help agent pay more attention to
attributes of destination nodes.

ϕ(an, sℓ) = βn
〈
ẽ, etnn

〉
+ (1− βn) ⟨r̃, rn⟩ , (12)

with

ẽ = WeReLU(W1[h
lstm/gru
ℓ ; etqq ; rq]),

r̃ = WrReLU(W1[h
lstm/gru
ℓ ; etqq ; rq]),

βn = sigmoid(Wβ [h
lstm/gru
ℓ ; etqq ; rq; e

tn
n ; rn]),

where W1, We, Wr and Wβ are trainable parameters for MLP or KAN.
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Policy Network

▶ Confidence Rate Action Calculation. We calculate the confidence rate can|q of each
an ∈ Aℓ via softmax function which receive the input vector from tensor decomposition
such as TuckER [15], ComplEx [22], and LowFER [11] as follow:

can|q =
exp(ψan|q)∑

a′
ℓ∈Aℓ

exp(ψa′
ℓ|q)

, (13)

where

ψan|q = W ×1 e
tq
q ×2 rq ×3 e

tn
n , if use TuckER,

ψan|q = Re
(〈

etqq , rq, e
tn
n

〉)
if use ComplEx,

ψan|q = (Skdiag(U⊤etqq )V⊤rq)
⊤etnn , if use LowFER,
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Policy Network

▶ The policy πθ(aℓ | sℓ) at step ℓ is defined as:

πθ(aℓ | sℓ) =
exp(ϕ(aℓ, sℓ) ∗ caℓ|q)∑

a′
ℓ∈Aℓ

exp(ϕ(a′ℓ, sℓ) ∗ ca′
ℓ|q)

(14)
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Optimization

We apply REINFORCE algorithm [27] that will iterate through all quadruple in Qtrain and
update θ with the following stochastic gradient method such as SGD [21], Adam [21, 24] or
AdaGrad [26]:

∇θJ(θ) ≈ ∇θ

∑
m∈[1,L]

R̃(sL|es, r, t) log πθ(aℓ|sℓ) (15)
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Datasets and Baselines

▶ Baselines.

1. Interpolation-based models: TTransE [18], TA-DistMult [17], DE-SimplE [12], and
TNTComplEx [14].

2. Extrapolation-based models: RE-NET [13], CyGNet [10], TANGO [4], xERTE [5], and
TITer [7].

▶ Datasets. ICEWS14 and ICEWS18 [23], WIKI [18] and YAGO [25].
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Performance and efficiency comparison

Method
ICEWS14 ICEWS18

MRR ↑ Hit@1 ↑ Hit@3 ↑ Hit@10 MRR ↑ Hit@1 ↑ Hit@3 ↑ Hit@10 ↑
TTransE 13.43 3.11 17.32 34.55 8.31 1.92 8.56 21.89
TA-DistMult 26.47 17.09 30.22 45.41 16.75 8.61 18.41 33.59
DE-SimplE 32.67 24.43 35.69 49.11 19.30 11.53 21.86 34.80
TNTComplEx 32.12 23.35 36.03 49.13 27.54 19.52 30.80 42.86
CyGNet 32.73 23.69 36.31 50.67 24.93 15.90 28.28 42.61
RE-NET 38.28 28.68 41.34 54.52 28.81 19.05 32.44 47.51
xERTE 40.79 32.70 45.67 57.30 29.31 21.03 33.51 46.48
TANGO-Tucker – – – – 28.68 19.35 32.17 47.04
TANGO-DistMult – – – – 26.75 17.92 30.08 44.09
TITer 41.73 32.74 46.46 58.44 29.98 22.05 33.46 44.83
TITer* 40.33 31.00 45.30 57.71 29.42 21.63 32.83 43.96
CATTer-MLP 41.21 32.47 45.75 57.37 29.54 21.60 32.99 44.51
CATTer-KAN 40.13 31.04 44.80 57.19 29.11 21.37 32.46 43.60
APG (%) ↑ (MLP) 0.62 0.54 0.61 0.64 -0.22 -0.39 -0.02 0.03
RPG (%) ↑ (MLP) 2.18 4.74 0.99 -0.59 0.41 -0.14 0.49 1.25
APG (%) ↑ (KAN) 0.65 0.48 0.77 0.92 -0.61 -0.68 -0.54 -0.53
RPG (%) ↑ (KAN) -0.49 0.13 -1.10 -0.90 -1.05 -1.20 -1.13 -0.82
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Performance and efficiency comparison

Method
WIKI YAGO

MRR ↑ Hit@1 ↑ Hit@3 ↑ Hit@10 MRR ↑ Hit@1 ↑ Hit@3 ↑ Hit@10 ↑
TTransE 29.27 21.67 34.43 42.39 31.19 18.12 40.91 51.21
TA-DistMult 44.53 39.92 48.73 51.71 54.92 48.15 59.61 66.71
DE-SimplE 45.43 42.6 47.71 49.55 54.91 51.64 57.30 60.17
TNTComplEx 45.03 40.04 49.31 52.03 57.98 52.92 61.33 66.69
CyGNet 33.89 29.06 36.10 41.86 52.07 45.36 56.12 63.77
RE-NET 49.66 46.88 51.19 53.48 58.02 53.06 61.08 66.29
xERTE 71.14 68.05 76.11 79.01 84.19 80.09 88.02 89.78
TANGO-Tucker 50.43 48.52 51.47 53.58 57.83 53.05 60.78 65.85
TANGO-DistMult 51.15 49.66 52.16 53.35 62.70 59.18 60.31 67.90
TITer 75.50 72.96 77.49 79.02 87.47 84.89 89.96 90.27
TITer* 73.56 71.48 74.86 76.40 87.80 85.52 89.92 90.31
CATTer-MLP 74.18 72.02 75.47 77.04 87.58 85.13 89.90 90.34
CATTer-KAN 74.21 71.96 75.63 77.32 87.19 84.84 89.38 89.78
APG (%) ↑ (MLP) 0.88 1.47 0.45 -0.34 0.12 -0.03 0.16 0.55
RPG (%) ↑ (MLP) 0.84 0.76 0.81 0.83 -0.25 -0.46 -0.02 0.03
APG (%) ↑ (KAN) -0.2 0.04 -0.5 -0.52 -0.31 -0.26 -0.37 -0.36
RPG (%) ↑ (KAN) 0.88 0.67 1.03 1.20 -0.69 -0.80 -0.60 -0.59
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Performance and efficiency comparison

Table: Number of trainable parameters and calculation of our proposed models and baselines. MACs
stand for Multi-Adds operations, and M stand for million.

Method # Params # MACs

RE-NET 5.459M 4.370M

CyGNet 8.568M 8.554M

xERTE 2.927M 225.895M

TITer 1.455M 0.225M

CATTer 1.425M 0.220M
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Convergence Study

Figure: The change of the loss function over each epoch with MLP and KAN Policy Network.
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Convergence Study

Figure: The change of the multi-reward function over each epoch with MLP and KAN Policy Network.
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The Effect of Tensor decomposition methods for action confidence

Figure: The effect of different tensor decomposition methods with MLP-Policy Network for action
confidence generation on ICEWS14, ICEWS18, YAGO, and WIKI dataset.
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The effect of multi-rewards

Figure: The effect of multi-reward mechanism for agent learning on ICEWS14, ICEWS18, YAGO and
WIKI dataset.

Experiments 33



Outline

Introduction

Backgrounds

Proposed Model
Multi-reward Mechanism with Rule Enhancing
Tensor Decomposition Confidence-Guided Policy Network
Agent Parameter Learning

Experiments

Conclusion and Future Directions

Conclusion and Future Directions 34



Conclusion

▶ Introduces CATTer, an improved temporal-path-based RL model based on TimeTraveler.

▶ Integrates confidence probability into MLP and KAN layers.

▶ Designs a flexible Policy Network for better action selection.

▶ Employs a multi-reward function for improved adaptability in TKGs.

▶ Experimental results show enhanced future link prediction.

▶ Future work: Incorporating sub-graph patterns and temporal rules.
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Thanks for your attention

Conclusion and Future Directions 36



References I

[1] Luyi Bai, Die Chai, and Lin Zhu. “RLAT: Multi-hop temporal knowledge graph reasoning
based on Reinforcement Learning and Attention Mechanism”. In: Knowledge-Based
Systems 269 (2023), p. 110514.

[2] Shangfei Zheng et al. “DREAM: Adaptive Reinforcement Learning based on Attention
Mechanism for Temporal Knowledge Graph Reasoning”. In: arXiv preprint
arXiv:2304.03984 (2023).

[3] Luyi Bai et al. “Multi-hop reasoning over paths in temporal knowledge graphs using
reinforcement learning”. In: Applied Soft Computing 103 (2021), p. 107144.

[4] Zifeng Ding et al. “Temporal Knowledge Graph Forecasting with Neural ODE”. In: arXiv
preprint arXiv:2101.05151 (2021).

[5] Zhen Han et al. “Explainable Subgraph Reasoning for Forecasting on Temporal
Knowledge Graphs”. In: International Conference on Learning Representations. 2021.

Conclusion and Future Directions 37



References II

[6] Zhen Han et al. “Temporal knowledge graph forecasting with neural ode”. In: arXiv
preprint arXiv:2101.05151 (2021).

[7] Haohai Sun et al. “TimeTraveler: Reinforcement Learning for Temporal Knowledge
Graph Forecasting”. In: Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing. 2021, pp. 8306–8319.

[8] Ye Tao, Ying Li, and Zhonghai Wu. “Temporal link prediction via reinforcement
learning”. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE. 2021, pp. 3470–3474.

[9] Cunchao Zhu et al. “Learning from history: Modeling temporal knowledge graphs with
sequential copy-generation networks”. In: Proceedings of the AAAI conference on
artificial intelligence. 2021, pp. 4732–4740.

[10] Cunchao Zhu et al. “Learning from History: Modeling Temporal Knowledge Graphs with
Sequential Copy-Generation Networks”. In: Thirty-Fifth AAAI Conference on Artificial
Intelligence. 2021, pp. 4732–4740.

Conclusion and Future Directions 38



References III

[11] Saadullah Amin et al. “LowFER: Low-rank bilinear pooling for link prediction”. In:
International Conference on Machine Learning. PMLR. 2020, pp. 257–268.

[12] Rishab Goel et al. “Diachronic Embedding for Temporal Knowledge Graph Completion”.
In: Thirty-Fourth AAAI Conference on Artificial Intelligence. 2020, pp. 3988–3995.

[13] Woojeong Jin et al. “Recurrent Event Network: Autoregressive Structure Inference over
Temporal Knowledge Graphs”. In: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing. 2020, pp. 6669–6683.

[14] Timothée Lacroix, Guillaume Obozinski, and Nicolas Usunier. “Tensor Decompositions
for Temporal Knowledge Base Completion”. In: International Conference on Learning
Representations. 2020.
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